M1. (a) (i) ΔH atomisation/sublimation of magnesium
(ii) Bond/dissociation enthalpy of $\mathrm{Cl}-\mathrm{Cl}$

OR $2 \times H$ atomisation of chlorine
(iii) Second ionisation enthalpy of magnesium
(iv) $2 \times$ electron affinity of chlorine
(v) Lattice formation enthalpy of MgCl_{2}
(b) Equation $2 \mathrm{MgCl}(\mathrm{s}) \rightarrow \mathrm{MgCl}_{2}(\mathrm{~s})+\mathrm{Mg}(\mathrm{s})$ State symbols not required but penalise if incorrect

Calculation $\quad \Delta H$ reaction $=\Sigma \Delta H_{\mathrm{f}}$ products $-\Sigma \Delta H_{\mathrm{f}}$ reactants
$=-653-(2 \times-133)$
$=-427\left(\mathrm{kJmol}^{-1}\right)$
Allow +427 to score (1) mark
Other answers; award (1) for a correct ΔH reaction expression
(c) ΔH soln $\mathrm{MgCl}_{2}=-\Delta H$ Lat.form. $+\Delta H$ hyd. $\mathrm{Mg}^{2+}+2 \Delta H$ hyd.Cl ${ }^{-}$
or cycle
$=2502-1920-(2 \times 364)$
$=-146\left(\mathrm{kJmol}^{-1}\right)$
Allow + 146 to score (1) mark
Other answers; award (1) for a correct ΔH soln MgCl_{2} expression/cycle

M2.A

M3. (a) M1 $\mathrm{K}_{\mathrm{p}}=\left({ }_{\mathrm{\rho}} \mathrm{Y}\right)^{3} \cdot\left({ }_{\mathrm{e}} \mathrm{Z}\right)^{2} /\left({ }_{\mathrm{P}} \mathrm{W}\right)^{2} \cdot\left({ }_{\mathrm{p}} \mathrm{X}\right) \quad N B[]$ wrong

M2 temperature

M3 increase

M4 particles have more energy or greater velocity/speed

M5 more collisions with $E>E_{a}$ or more successful collisions

M6 Reaction exothermic or converse

M7 Equilibrium moves in the left

Marks for other answers
Increase in pressure or concentration allow M1, M5, M6 Max 3
Addition of a catalyst;
Decrease in temperature;
Two or more changes made;
allow M1, M5, M6 Max 3
allow M1, M2, M6 Max 3
allow M1, M6 Max 2
(b) (i) Advantage; reaction goes to completion, not reversible or faster

Disadvantage; reaction vigorous/dangerous
(exothermic must be qualified)
or $\mathrm{HCl}(\mathrm{g})$ evolved/toxic
or $\mathrm{CH}_{3} \mathrm{COCl}$ expensive
NB Allow converse answers
Do not allow reactions with other reagents e.g. water or ease of separation
(ii) $\Delta S=\Sigma S$ products $-\Sigma S$ reactants
\rightarrow ต
) (lgnore units)
Allow - 84 to score (1) mark

$=-21.6-298 \times 84 / 1000$
$=-46.6 \mathrm{~kJ} \mathrm{~mol}^{-1}$ or $-46600 \mathrm{~J} \mathrm{~mol}^{-1}$
Allow (2) for -46.6 without units
(Mark ΔG consequentially to incorrect ΔS)
(e.g. $\Delta S=-84$ gives $\Delta G=+3.4 \mathrm{~kJ} \mathrm{~mol}^{-1}$)

M4. (a) (i) enthalpy (or heat or heat energy) change when 1 mol of a substance (1) (QL mark) is formed from its elements (1) all substances in their standard states (1) (or normal states at 298K, 100 kPa or std condits)
not STP, NTP
(b) enthalpy change (or enthalpy of reaction) is independent of route (1)

$$
\Delta H=\Sigma \Delta \mathrm{H}_{\mathrm{t}}^{\Theta} \text { prods }-\Sigma \Delta \mathrm{H}_{\mathrm{t}}^{\ominus} \text { reactants (or cycle) (1) }
$$

minimum correct cycle is:

$$
\Delta H=-642-286-(-602+2 \times-92)(1)
$$

$$
=-142\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)(1)
$$

penalise this mark for wrong units
+142 scores 1 mark out of the last three
(c) $\quad \Delta \mathrm{H}=m c T$ (1) $\quad($ or $m c \Delta T)$
$=50 \times 4.2 \times 32=6720 \mathrm{~J}=6.72 \mathrm{~J}(1)$
mark is for 6720 J or 6.72 kJ
moles $\mathrm{HCl}=\frac{\mathrm{vol}}{1000} \times$ conc $=\frac{50}{1000} \times 3(1)$
$=0.15$ (1)
if error here mark on conseq.
Therefore moles of MgO reacted $=$ moles $\mathrm{HCl} / 2$ (1)
(mark is for/2, CE if not/2)
$=0.15 / 2=0.075$ $\begin{aligned} & \text { Therefore } \begin{array}{l}\Delta H=6.72 / 0.075(1) \\ =-90 \mathrm{~kJ}\left(\mathrm{~mol}^{-1}\right) \\ \mathrm{kJ} \text { must be given, allow } 89 \text { to } 91 \\ \text { value (1) } \\ \text { sign (1); this mark can be given despite CE for } / 2\end{array}\end{aligned}$

Note various combinations of answers to part (c) score as follows:
-89 to $-91 \mathrm{~kJ}(8)$ (or -89000 to 91000 J)
no units (7)
+89 to $+91 \mathrm{~kJ}(7)($ or +89000 to $+91000 \mathrm{~J})$
no units (6)
-44 to $-46 \mathrm{~kJ}(5)$ (or -44000 to -46000 J)
no units (4) if units after 6.72 or 6720 (5)
+44 to $+46 \mathrm{~kJ}(4)(\mathrm{or}+44000$ to +46000$)$
if no units and
if no units after 6.72 or 6720 (3)
otherwise check, could be (4)

M5. (a) Standard enthalpy change, $\Delta H^{\ominus}: \Delta H_{R}=\Sigma \Delta H_{\text {products }}-\Sigma \Delta H_{\text {teacatants }}$ (1) or cycle

$$
\begin{aligned}
& \begin{aligned}
& \Delta H_{R}=(0+[2 \times-242])-(4 \times-92)(1) \\
&=-484+368 \\
&=-116\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \\
& \quad \text { Allow max } 1 \text { for }+116
\end{aligned} \\
& \text { Standard entropy change, } \Delta \mathrm{S}^{\Theta}: \Delta \mathrm{S}=\Sigma \Delta \mathrm{H}_{\text {trooducts }}-\Sigma \Delta \mathrm{H}_{\text {traeatants }} \\
& \Delta S=([2 \times 223]+[2 \times 189])-(205+[4 \times 187])(1) \\
& =824-953 \\
& =-129\left(\mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right) \\
& \quad \text { allow max one for }+129
\end{aligned}
$$

(b) (i) Effect: Equilibrium displaced to right / to products (1)

Explanation: Reaction is endothermic (1)
Constraint reduced (1)
mark separately
(ii) Feasible when $\Delta G \leq 0$ (1)
$\Delta G=\Delta H-T \Delta S(1)$
$\mathrm{T}=\Delta H / \Delta S=208 \times 1000(1) / 253$
$=822 \mathrm{~K}(1)$
[13]

M6.D

M7.C

