M1. (a) (i) ΔH atomisation/sublimation of magnesium

1

(ii) Bond/dissociation enthalpy of CI-CI

OR $2 \times H$ atomisation of chlorine

1

(iii) Second ionisation enthalpy of magnesium

1

(iv) 2 × electron affinity of chlorine

1

(v) Lattice formation enthalpy of MgCl₂

1

- (b) Equation $2MgCl(s) \rightarrow MgCl_2(s) + Mg(s)$ State symbols not required but penalise if incorrect
- 1

Calculation ΔH reaction = $\Sigma \Delta H_t$ products $-\Sigma \Delta H_t$ reactants

1

 $= -653 - (2 \times -133)$

1

 $= -427 \text{ (kJmol}^{-1})$

Allow +427 to score (1) mark

Other answers; award (1) for a correct Δ H reaction expression

1

- (c) ΔH soln MgCl₂ = $-\Delta H$ Lat.form. + ΔH hyd.Mg²⁺ + $2\Delta H$ hyd.Cl⁻
- 1

or cycle

$$= 2502 - 1920 - (2 \times 364)$$

1

 $= -146 \text{ (kJmol}^{-1})$

Allow + 146 to score (1) mark

Other answers; award (1) for a correct ΔH soln MgCl₂ expression/cycle

1

[12]

М3.	(a)	M1	$K_p = (_PY)^3. (_PZ)^2/(_PW)^2.(_PX)$	NB [] wrong		1
	М2	temperature				1
	МЗ	increase				1
	M4	particles have more energy or greater velocity/speed				1
	M5	more collisions with E > E_a or more successful collisions				1
	М6	Reaction exothermic or converse				1
	М7	Equi	librium moves in the left			1
	Incre Addi Dec	Marks for other answers Increase in pressure or concentration allow M1, M5, M6 Max 3 Addition of a catalyst; allow M1, M5, M6 Max 3 Decrease in temperature; allow M1, M2, M6 Max 3 Two or more changes made; allow M1, M6 Max 2				

(b) (i) Advantage; reaction goes to completion, not reversible or faster

> Disadvantage; reaction vigorous/dangerous (exothermic must be qualified)

> > or HCl(g) evolved/toxic or CH₃COCI expensive Allow converse answers Do not allow reactions with other reagents e.g. water

or ease of separation

1

1

(ii)
$$\Delta S = \Sigma S$$
 products $-\Sigma S$ reactants

1

 $\Delta S = (259 + 187) - (201 + 161)$

1

 $\Delta S = 84 \text{ (JK}^{-1} \text{ mol}^{-1}) \text{ (Ignore units)}$
 $Allow - 84 \text{ to score (1) mark}$

1

 $= -21.6 - 298 \times 84/1000$
 $= -46.6 \text{ kJ mol}^{-1} \text{ or } -46 600 \text{ J mol}^{-1}$
 $Allow \text{ (2) for } -46.6 \text{ without units}$
 $(Mark \Delta G \text{ consequentially to incorrect } \Delta S)$
 $(e.g. \Delta S = -84 \text{ gives } \Delta G = +3.4 \text{ kJ mol}^{-1})$

1

3

[15]

- (a) (i) enthalpy (or heat or heat energy) <u>change</u> when 1 mol of a substance (1) (QL mark) is formed from its elements (1) all substances in their standard states (1) (or normal states at 298K, 100 kPa or std condits)
 not STP, NTP
 - (b) <u>enthalpy change</u> (or <u>enthalpy of reaction</u>) is independent of route (1) $\Delta H = \Sigma \Delta H_{i}^{\bullet} \text{ prods } \Sigma \Delta H_{i}^{\bullet} \text{ reactants (or cycle)} \text{ (1)}$ minimum correct cycle is:

Page 4

$$\Delta H = -642 - 286 - (-602 + 2 \times -92)$$
 (1)
= -142 (kJ mol⁻¹) (1)
penalise this mark for wrong units
+142 scores 1 mark out of the last three

4

(c)
$$\Delta H = mcT$$
 (1) (or $mc\Delta T$)
= $50 \times 4.2 \times 32 = 6720 \text{ J} = 6.72 \text{ J}$ (1)
mark is for 6720 J or 6.72 kJ

moles HCI =
$$\frac{\text{vol}}{1000} \times \text{conc} = \frac{50}{1000} \times 3 \text{ (1)}$$

= 0.15 **(1)**

if error here mark on conseq.

Therefore moles of MgO reacted = moles HCl/2 (1) (mark is for/2, CE if not/2) = 0.15/2 = 0.075

Therefore
$$\Delta H = 6.72/0.075$$
 (1)
= -90 kJ (mol⁻¹)
kJ must be given, allow 89 to 91

value (1)

sign (1); this mark can be given despite CE for /2

8

Note various combinations of answers to part (c) score as follows:

[15]

M5. (a) Standard enthalpy change, ΔH^{\bullet} : $\Delta H_{R} = \Sigma \Delta H_{foroducts} - \Sigma \Delta H_{freactants}$ (1) or cycle

$$\Delta H_R = (0 + [2 \times -242]) - (4 \times -92)$$
 (1)
= -484 + 368
= -116 (kJ mol⁻¹)
Allow max 1 for +116

Standard entropy change, ΔS^{\bullet} : $\Delta S = \Sigma \Delta H_{f \text{ products}} - \Sigma \Delta H_{f \text{ reactants}}$

$$\Delta S = ([2 \times 223] + [2 \times 189]) - (205 + [4 \times 187])$$
 (1)
= 824 - 953

= -129 (J K⁻¹ mol⁻¹)

allow max one for +129

(b) (i) Effect: Equilibrium displaced to right / to products (1)

Explanation: Reaction is endothermic (1)

Constraint reduced (1)

mark separately

(ii) Feasible when $\Delta G \leq 0$ (1)

$$\Delta G = \Delta H - T\Delta S$$
 (1)
 $T = \Delta H/\Delta S = 208 \times 1000$ (1) / 253
= 822 K (1)

[13]

7

6

M6.D

[1]

M7.C

[1]